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➢ Quantum computing systems can be implemented with a variety of 

quantum systems, such as trapped ions, superconducting qubits, photons, 

and silicon. David DiVincenzo laid out DiVincenzo criteria.

➢ The physics of Electron transport in S-S and N-S junctions has been 

explained through – a) Scattering theory b) NEGF formalism.

➢ We aim to simulate the Josephson current for conventional s-wave 

semiconductor, extend to unconventional junction cases using NEGF. 
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Physics of Electron transport in s-wave junctions and Methodology

➢ Non-equilibrium green function (NEGF) 

➢ HBdg: Bogoliubov-deGennes Hamiltonian

➢ Green’s function: 

➢ Surface Green’s functions(to be solved iteratively):

➢ Tunneling limit approximation ∶ M ≪ t0
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(i) Schematic diagram of a Josephson junction connected to a bias voltage V.  (ii) Comparison of the phase (a), 

flux (b), and charge (c) qubits. Top row illustrates the circuits, with each ” X ” symbol representing a Josephson 

junction. Middle row has a plot of the Hamiltonian potential (thick line), showing qualitatively different shapes for 

three qubit types. Ground-state wavefunction is also indicated (thin line).

Interpretation of metal in BdG formulation. Tight binding chain. A typical NEGF calculation

involves two leads and a channel. Tight Binding Model used for simulation. BdG Hamiltonian 

structure.

Josephson dc current-phase relationship for s-wave superconductors, shows sinusoidal behaviour. For unconventional semiconductor and cases where M >> t0, we observe non-sinusoidal relationship

Path toward fault-tolerant, quantum error–corrected 
quantum computers (left) as well as NISQ computing (right)

using superconducting qubits. 

(a) The energy spectrum of a quantum harmonic oscillator. (b) The energy 
spectrum of the transmon qubit,  (c) Evolution of lifetimes

and coherence times in superconducting qubits.

➢ Using current techniques, it seems possible to scale 

to on the order of 1,000 qubits. However, beyond this 

(rough) number, a new set of techniques will be 

needed.

➢ Control and high coherence in medium-scale devices, 

Scalable calibration techniques, Verification and 

validation are some of the challenges forming 

technology bottleneck.
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I. INTRODUCTION

Quantum computers uses the intrinsic quantum me-
chanical properties, which efficiently solves certain prob-
lems that are intractable for classical computers. Over
last twenty years there has been a tremendous devel-
opment of quantum technologies and we have moved
into noisy intermediate-scale quantum(NISQ) era, where
control of a quantum system with over 50 qubits is
demonstrated.1

Quantum computing systems can be implemented with
a variety of quantum systems, such as trapped ions, su-
perconducting qubits, photons, and silicon. Semiconduc-
tor spin qubits stands out as one of the most viable sys-
tem for hosting qubits because of their long-lasting quan-
tum coherence, control and scaling opportunities. Su-
perconducting quantum devices are practical in terms of
connectivity and controllability. Combining them with
semiconductor qubits has been the cause of remarkable
progress of this qubit processor architecture over that
of the other platforms. A major milestone, known as
”quantum supremacy”(quantum advantage), represents
a long-sought stride toward quantum computing. This
remarkable milestone was first demonstrated using su-
perconducting system in 2019.2

A. Superconducting qubits

To have desirable qualities and high performance from
devices, such as long coherence times and high control-
lability, significant focus on the Qubit design is neces-
sary. Keeping the design constraints in mind, a series of
criteria had been summarized to test whether a certain
physical systems can be used to realize quantum com-
puting. David DiVincenzo laid out first organised set of
criteria, widely called DiVincenzo criteria3: (1) A scal-
able physical system with well characterized qubit. (2)
The ability to initialize the state of the qubits to a simple
fiducial state. (3) Long relevant decoherence times. (4)
A ”universal” set of quantum gates. (5) A qubit-specific
measurement capability. (6) The ability to interconvert
stationary and flying qubits. (7) The ability to faithfully
transmit flying qubits between specified locations. These
criterion has become the basis to screen physical systems
feasible to host qubits.

Depending on different degrees of freedom supercon-
ducting qubits are mainly divided into three categories:
charge qubits, flux qubits and phase qubits. These qubits
can be distinguished on the basis of ratio of josephson en-

Figure 1. Schematic diagram of a Josephson junction con-
nected to a bias voltage V. The josephson current is given by
IJ = I0sinδ

ergy and charging energies.4

B. Josephson Junctions - Electron Transport

Electronic transport through N-S and S-S junctions
had been discussed for many years. Theoretical under-
standing of these systems has been obtained by analyzing
simple models of one dimensional character. These mod-
els had been particularly used to find out microscopic
origin of basic phenomena like excess current in N-S and
S-S contacts. Quantum transport in microelectronic de-
vices has been mainly explained by the Green’s function
or the scattering picture introduced by Landauer.5,6

II. THEORY

The Josephson qubit is typically insensitive to quasi-
particle damping, such that a phase qubit can be con-
structed from micro-bridge junctions.

A. Non-linear Josephson Inductance

The Josephson effect describes the supercurrent IJ
that flows through the junction according to classical
equations,

IJ = I0 sin δ (1)

V =
Φ0

2π

dδ

dt
(2)

with Φ0 = h/2e is superconducting flux quantum, I0
is the critical-current parameter of the junction, and
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δ = ϕL − ϕR and V are respectively the superconduct-
ing phase difference and voltage across the junction. The
dynamical behavior of these two equations can be under-
stood by first differentiating 1 and replacing dδ/dt with
V as in 2,

dIJ
dt

= I0 cos δ
2π

Φ0
V. (3)

With dIJ/dt proportional to V , this equation describes
an inductor. We define Josephson inductance LJ accord-
ing to the conventional definition V = LJdIJ/dt and one
finds,

LJ =
Φ0

2πI0 cos δ
(4)

The 1/ cos δ term reveals that this inductance is non-
linear. It becomes large as δ → π/2, and is negative
for π/2 < δ < 3π/2. The inductance at zero bias is
LJ0 = Φ0/2πI0.

B. Phase, Flux and Charge Qubits

A Josephson qubit is understood as a non-linear res-
onator formed from the josephson inductance and its
junction capacitance. Non-linearity is crucial and is
utilised to restrict the operationg space of the qubits into
only the two lowest states. The system is effectively a
two-state system7 only if the frequency ω10 that drives
transitions between the qubit states 0 ←→ 1 is different
from the frequency ω21 for transitions 1←→ 2.
The three types of qubits can be made depending on

how the non-linear resonator is made. These are phase,
flux and charge qubits. The respective circuits are shown
in the fig. 2.

Figure 2. Comparison of the phase (a), flux (b), and charge
(c) qubits. Top row illustrates the circuits, with each ” X ”
symbol representing a Josephson junction. Middle row has a
plot of the Hamiltonian potential (thick line), showing quali-
tatively different shapes for three qubit types. Ground-state
wavefunction is also indicated (thin line). Key circuit param-
eters are listed in next row. Lowest row indicates variations
on the basic circuit, as discussed in text. The lowest three en-
ergy levels are illustrated for the phase qubit (dotted lines).

In summary, the major difference between phase, flux
and charge qubits is due to their non-linear potentials,
which are respectively cubic, quartic and cosine.

C. Transport Models

Quasi-particles in systems comprising of inhomogenous
superconductors and junctions with other kinds of con-
ductors are described by the stationary states of the
Bogoliubov-deGennes (BdG)8 equation given by:

E

{
u
v

}
=

(
H + U ∆
∆∗ − (H∗ + U)

){
u
v

}
, (5)

whereH is the one-electron Hamiltonian minus the chem-
ical potential µ,∆ is the pairing potential, and U is th
potential energy.

H =
(p− eA)2

2m
+ eV − µ, (6)

As mentioned earlier, two approaches are widely used

Figure 3. BdG interpretation of normal metal. An up spin
and down spin band filled up to the chemical potential may
be represented as a superposition of a fully filled down spin
band (vacuum) and states of the BdG equation filled up to
the chemical potential.

to explain transport: (1) Scattering Approach and (2)
Non-Equilibrium Green’s Function. We shall be dis-
cussing the NEGF approach here. The main advantage
of NEGF approach is that it provides a systemic compu-
tational framework for arbitrary geometries including un-
conventional pairing6. One can start with a simple one-
dimensional tight-binding framework on the BdG Hamil-
tonian using the basis functions as localized tight binding
orbitals.Within this framework, we have two matrices [α]
and [β] representing the on-site and the hopping parts of
the tight-binding chain as shown in Fig. 4. The leads in
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general form semi-infinite systems and need to be incor-
porated correctly.

Figure 4. Tight binding chain. A typical NEGF calculation
involves two leads and a channel. The tight binding matrices
for the on-site and hopping are respectively [α] and [β]. These
matrices in the case of systems involving superconductors are
evaluated via the BdG equation and form 2 × 2 matrices in
Nambu space for a single orbital basis in real space.

The Hamiltonian matrix of the entire system is given
by

[H]BdG =


α β 0 0
β† α β 0
0 β† α β
· . · ·

 , (7)

where

[α] =

(
ϵ− µ ∆
∆∗ −(ϵ− µ)

)
(8)

and

[β] =

(
−t 0
0 t

)
(9)

where ϵ represents the on-site energy and t, the hopping
parameter within the tight-binding framework. We must
note that the above expressions are obtained from (5)
using the tight binding basis. With the above framework
the retarded Green’s function of the composite structure
is given by

Gr(E) = [EI −HBdG + iη]
−1

. (10)

Since the above is an infinite matrix, the above equation
is partitioned between the channel and the leads using the
channel Green’s function and self-energies of the leads

Gr(E) = [(E + iη)I −H − ΣL − ΣR]
−1

(11)

where the lead self energies are given via the sur-
face Green’s function gsL,sR as ΣL(E) = β†gsLβ and
ΣR(E) = βgsRβ

† with gsL,sR satisfying a generic recur-
sive relation to be solved iteratively6,9 as

gsL(E) =
[
EI − αS − β†gsLβ

]−1
(12)

gsR(E) =
[
EI − αS − βgsLβ

†]−1
(13)

The term gsL,sR is evaluated on the plane defining the
surface at the lead-channel interface with αS being the
onsite matrix on the surface plane. After recursively ob-
taining the surface Green’s functions and evaluating the
retarded Green’s function, we can proceed with the calcu-
lation of non-equilibrium quantities such charge densities
and currents.
For calculations of dc quantities, we have a common

gauge transformation that keeps the superconductors at
µ = 0. However, different energy components can get
coupled in the case of ac Josephson effects where the two
superconductors are kept at different chemical potentials
with no common gauge transformation. Let us first con-
sider the dc case or a case where one of the contact is
normal so that we do not have to worry about using two
energy co-ordinates. In this case, the charge density is
calculated via the ”lesser” Green’s function or equiva-
lently, the correlation function given by:

G<(E) = Gr(E)
(
Σ<

L (E) + Σ<
R(E)

)
Ga(E), (14)

where Ga is the advanced Green’s function, which is the
hermitian conjugate of the retarded Green’s function cal-
culated from eqn. 11. The quantities Σ<

L,R(E) represent
the in-scattering functions from leads L and R respec-
tively evaluated in the gauge transformed energy domain
as

Σ<
L,R(E) = i

[
ΣL,R(E)− Σ†

L,R(E)
]
fL,R(E), (15)

where the contact self energies ΣL,R(E) are evaluated
using eqn. 12 and 13. In this formulation, all different
components of the currents can then be deduced from
the correlation function

Iop =
e

h

[
Hi,i±1G

<(i± 1, i)−G<(i, i± 1)Hi±1,i

]
, (16)

where the Hi,i±1 term represents the hopping part of the
Hamiltonian in BdG space and the relevant off-diagonal
parts of the correlation function is included.

D. Tunnel limit Approximations – Simulations

We start with a simple tunnel junction, which com-
prises two superconducting contacts. Following the
transfer matrix approach, we note that the tunneling is
represented by a matrix element M , which we assume to
be energy independent. In that case, the device region
under consideration would be just two points, each rep-
resenting an edge site of either contact. Our procedure
would be to detail a first order (with respect to M ) cal-
culation of the tunneling currents. The retarded Green’s
function matrix of this system is given by

[G] =

(
(gsL)

−1 −M
−M† (gsR)

−1

)−1

, (17)

where gsL(R) denote the surface Green’s function asso-
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Figure 5. System consideration for the simulation. he device
region simply comprises of two points at the edge of each
contact and no point in between. The two device points are
connected via a weak link with a tunneling matrix element
M.

ciated with the left (right) contact evaluated using the
prescription detailed in eqn. 8,11, and 13. To first order,
we can expand the above equation as

[G] ≈
(

gsL gsLMgsR
gsRM

†gsL gsR

)
(18)

We would like to note at this stage that gsL(R) are 2× 2
matrices in Nambu space represented as

gsL,R =

(
geesL,R gehsL,R

ghesL,R ghhsL,R

)
(19)

where the superscripts ee,hh, eh and he denote the elec-
tron and hole components in the Nambu space. We now
write the expression for Josephson current and Quasipar-
ticle current under the tunnelling limit approximation as

iJ(E) = 4Re
[
ghesL(E)gehsR(E)− ghesR(E)gehsL(E)

]
f(E)

(20)

iQP (E) = [aeeR (E + V )aeeL (E) +ahhR (E + V )ahhL (E)
]

× [f(E)− f(E + V )],
(21)

where, aL,R(E) = i
[
gsL,R(E)− g†sL,R(E)

]
represents the

spectral function. We must note that the above ex-
pressions are valid only when the first order expansion
described in eqn. 18 is valid, which is typically when
M << t0, where t0 is the hopping coefficient in the lat-
tice of the superconducting leads. For larger values of M ,
one cannot perform the approximation as eqn. 18 and
hence the current operator must be numerically evalu-
ated using the exact expression of the retarded Green’s
function described in eqn. 17.
We plot the current-phase relation of the dc Joseph-
son current (I − ϕ relationship) for M << t0 in fig.
6. Proceeding in similar fashion, the quasi-particle
current(IQP ) is plotted in fig. 7.

We notice as expected that the threshold voltage is
typically set by eV = ∆1 +∆2,

Figure 6. Josephson dc current- phase relationships for small
values of tunnel matrix element M. Produced from simulation
in MATLAB

Figure 7. Quasiparticle I − V characteristics for a weak
link between two superconductors with ∆1 ̸= ∆2 (shown in
yellow) and ∆2 = 0 (S-N junction shown as blue ). We note
that the threshold voltage is eV = ∆1 +∆2 as expected.

E. Unconventional Superconductors

Electrical transport properties of unconventional su-
perconductors are qualitatively different from the con-
ventional s-wave superconductors.One can extend the
NEGF method to unconventional superconductors by
properly including the surface effects such as midgap
states arising from the sign change of the order parame-
ter. Formation of π junction and non-sinusoidal Joseph-
son current is depicted in fig. 8.

III. CURRENT STATUS AND APPLICATIONS

In figure 9, we show two major tracks being pur-
sued by the community in parallel.Current performances
of conventional JJ qubits and the addition of anhar-
monocity is shown in figure 10.The transmon is cur-
rently the most widely used qubit for gate-based quan-
tum computation, and it has been used to demonstrate
multiple high-fidelity logical operations, quantum simu-
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Figure 8. Non-sinusoidal JJ current for d-wave superconduc-
tors, from reference ??

lations, digital algorithms, and the first demonstration
of quantum supremacy.Today, a generalized supercon-
ducting qubit framework is emerging, featuring a capaci-
tively shunted small junction in series with N larger-area
Josephson junctions (or an inductive shunt). The trans-
mon is an early example of this evolution, as is the ca-
pacitively shunted flux qubit.Recent demonstrations in
this so-called NISQ era seek to perform useful quantum
computations while tolerating some system noise in or-
der to stretch limited (intermediate-scale) quantum re-
sources to their maximum effect. Despite the tremen-
dous progress on coherence, gate operations, and read-
out fidelity achieved with superconducting qubits, QEC
is still be needed to realize truly large-scale quantum
computers.1

Figure 9. Path toward fault-tolerant, quantum error–corrected quantum computers (left) as well as NISQ computing (right)
using superconducting qubits. The two tracks are pursued in parallel in many academic, government, and industrial laboratories.
Abbreviation: NISQ, noisy intermediate-scale quantum.

Figure 10. (a) The energy spectrum of a quantum harmonic oscillator. (b) The energy spectrum of the transmon qubit, showing
how the introduction of the nonlinear Josephson junction produces non-equidistant energy levels. (c) Evolution of lifetimes
and coherence times in superconducting qubits.
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IV. CONCLUSION

Here, we demonstrated a powerful numerical method
to model transport experiments through conventional s-
wave superconductors. We also discussed the current
state of the art developments on the path towards large
quantum processors. Finally, we outline a few of the chal-
lenges facing the community, as quantum processors are
now moving from 10–20-qubit scale to the 50–100-qubit
scale.1,10

• Control and high coherence in medium-scale
devices: For medium- and large-scale devices,
the individual qubit coherences are not necessar-
ily the same as those in simpler few-qubit devices.
Maintaining high coherence and high-fidelity con-
trol across a large chip is a key challenge.

• Scalable calibration techniques: Advanced
software strategies are also needed to calibrate
medium- to large-scale quantum processors due to
the large number of nontrivial cross- calibration
terms while finding simultaneous optimal operat-
ing parameters.

• Verification and validation: As the number of
qubits increases, efficiently determining the fidelity
of quantum operations across the entire chip us-
ing, e.g., Clifford randomized benchmarking11 be-
comes infeasible and new techniques for validation
and verification will be needed. Techniques such
as cross entropy benchmarking12 and direct bench-
marking13 have recently been proposed and imple-
mented.

• Improving qubit connectivity: Although im-

pressive progress has been made in three- dimen-
sional integration of superconducting circuits (e.g.,
Reference14), nonplanar con- nectivity of high-
fidelity qubits has yet to be demonstrated.

• Improved gate fidelity: Continued improve-
ments to gate fidelities will be an important step to-
ward bringing down the overhead of physical qubits
needed to encode a single logical qubit as well as
important for demonstrating the efficacy of NISQ
algorithms.

• Robust and reproducible fabrication: The
fabrication of medium- to large-scale super-
conducting circuits will need to be consistent with
continued improvements to qubit co- herence and
3D integration techniques.

Using current techniques—notwithstanding the chal-
lenges outlined above—it seems possible to scale to on
the order of 1,000 qubits. However, beyond this (rough)
number, a new set of techniques will be needed. Exam-
ples include colocation inside the dilution refrigerator
of control and readout electronics, as well as on-the-fly
decoders for quantum error correction procedures.

Acknowlegements: I am sincerely thankful for pro-
fessor Bhaskaran Muralidaharan for guiding me in the
project and directing towards the necessary resources.

Appendix A

Link to MATLAB code: https://github.com/
AnDa-creator/Josephson_Junction/blob/master/
JJ_1DNEGF_tunnelJ.m
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