Indian Institute of Technology Bombay

6 Stage Pipelined Processor
EE 739: Processor Design
Course Project - 1

Anuranan Das - 18D070037
Aditya Rajeev Harakare - 18D100001
Ruchir Chheda - 18D100016

Department of Electrical Engineering

Contents

1__Problem Statement]
27 Design Description|
[3 Datapath Implementation|
[B.1 Multiplexers|
B2ATT . . .o o
3.3 Memory|
[3.4 Register File|.
[3.5 Intermediate Pipeline Registers|
BE _CCRI oo
[3.7 Forwarding Unit|.
B.8 Control Decoder].
3.9 LA/LM/SA/SM Controller|.
[3.10 Branch and Jump Controller|.o i
B.11 Branch Predictor] [
[4 Pipeline Stages] 7
M1 TInstruction Fetchl o i
K2 TInstruction Decoded
4.3 Register Read|
B4 Execudo
.5 Memory Access|
M6 Write Backl
[> Intermediate Pipeline Registers| 8
5.1 IF/ID Register]
5.2 ID/RR Register| e
5.3 RR/EX Register]
5.4 EX/MEM Register|
5.5 MEM/WB Register] O]
[6__Hazards 10
6.1 Toad Hazards 10l
6.2 LA LM Hazardsl. e 10
6.3 Branch Hazardd 10
[7__Simulations and Results| 10!
[7.1 Running the Simualtions| 10
I8 _Conclusion| 13|

1 Problem Statement

To design a 6 stage pipelined processor, IITB-RISC-22, whose instruction set architecture is provided.
IITB-RISCis a 16-bit very simple computer developed for the teaching that is based on the Little
Computer Architecture. The IITB-RISC-22 is a 16-bit computer system with 8 registers. It should
follow the standard 6 stage pipelines (Instruction fetch, instruction decode, register read, execute,
memory access, and write back). The architecture should be optimized for performance, i.e., should
include hazard mitigation techniques. Hence, it should have forwarding and branch prediction technique.

2 Design Description

ITTB-RISC is a 16-bit processor based on the Little Computer Architecture. IITB RISC has 8 general-
purpose registers (RO to R7). Register R7 is always stores Program Counter. This architecture uses
condition code register which has two flags Carry flag (C) and Zero flag (Z). The architecture is optimized
for performance and thereby includes branch prediction and hazard mitigation techniques. There are
three machine-code instruction formats (R, I, and J type) as illustrated in the figure below.

R Type Instruction format

Opcode Register A (RA)| Register B (RB) | Register B (RB) | Unused Condition (CZ)
(4 bit) (3 bit) (3-hit) (3-hit) (1 bit) (2 bit)
I Type Instruction format
Opcode Register A (RA)| Register C (RC) Immediate
(4 bit) (3 bit) (3-bit) (6 bits signed)
J Type Instruction format
Cpcode Register A (RA) Immediate
(4 bit) (3 bit) (9 bits signed)

Figure 1: Instruction Formats

We have implemented a 6 stage pipelined design including the following stages:

1.

2.

d.
6.

Instruction Fetch Stage (IF Stage)

Instruction Decode Stage (ID Stage)

Register Read Stage (RR Stage)

Execution Stage (EX Stage)

Memory Stage (MEM Stage)

Write Back Stage (WB Stage)

The design supports the following instruction set:

Minemonic (Mame & Format |Assembly Action
ADD Ao ladd rc. o, FB Add content of regB to regh and store
result in regl.
(R}
't modiftes C and £ flags
ADC \Add if carry set ladc e, g, rb Add content of regB to regh and store
result in regl, if carry flaf is ==t
(R}
't modifies C & £ flogs
ADZ \Add if zero zet lodz rc, ra, rb Add content of regB to regh and store
resultin regl, if zero flag is zet
(R}
It modifies C & £ flogs
ADL lAdd with one bit |Adl rorark Add content of regB {after one bit left
left shift of RE =hift) to regA and store result in regC
(R} 't modifies C & £ flogs
AT |Add immediate \adi rb, ra. invmE Add content of regh with Imm (sign
extended) and store result in regB.
(1
't modiftes C and £ flags
MO Mamd Indu rc, ra, rk MAMD the content of regB 1o regA and
store result in regl
(R}
't modifies £ flag
M DC Mand if carry st |ndcrc, ra, rb MAMD the content of regB to regh and
store result in regl 0f carmy flag s et
(R]
it modifies Z flag
MDZ Mand if zero set |ndcrc ra, rb MAMD the content of regB to regd and
store result in regl if zero flag is 5=t
(R]
it modifies £ flag
LHI Load higher Wki ra, lmm Flace 9@ bits immediate into most
immediate (J) significant @ biwz of register A (RA) and
|lowier 7 bitz are assigned to zero.
LW Load Vw ra, rb, Imm Load value from memory into reg A.
Memeory address is formed by adding
" immediate § bits with content of red B.
it modifies zero flog.
S Store sw ra, rb, fmm Store walue from reg A into memeorny.
flemory 2ddress is formed by adding
U immediate 6 bits with content of red B.
LI Load multiple W ra, fmm Load multiple registers whoss address is
given in the immediste field (ons bit per
) register, RD to RT) in order from left to
right, i.e registers from RO to RT if
corresponding bit is set. Memory address
iz given in reg A. Registers are loaded
from consecutive addreszes.
Sh Store multiple lEm, ra, Imm Store multipls registers whose address s

)

given in the immedizte field (ons bit per
register, RQ to RT) in order from left to
right, i.e. registers from RO to RT if
corresponding bit is set. Memory address
iz given in reg A Registers are stored to
consecutive addresses,

LA Load al Vo ra Load value from successive memory
locations inte registers RO to RE. Starting
memory address iz given by RA.

DA Store 3l l5g rag Store values from registers RO 1o RE to
successive memory locations starting
i

1)

from address given in RA

BEQ Branch on Equality |beq ra, rb, Imm fcontent of reg & and reg3 are the
zame, branch to PCslmm, whars 200z
m
(1 the address of beg instruction
AL Jurnp and Link alr ra, Imm Branch to the address PC+ Imm.

(1 Store PC+1 into regh, where PC s the
address of the jalr instruction

L& Jurnp and Link to [jalr ra, rb Branch to the address im regs.
Regizter
Store PC+1 into regh where PC s the
(1) addrezs of the jalr instruction

Rl lurnp to register |iri ra, Imm Branmch to memory location given by the

RA = Imi
i
i

Figure 2: Instruction Description

3 Datapath Implementation

The design has been implemented in Verilog. Following are the main components of the datapath:

3.1 Multiplexers

Multiplexers are required for the steering logic, whose control signals will be given by the main decoder
(or from any other auxiliary decoders for branch / branch predictor / LA, LM Controller). Mainly there
are 2 input and 4 input Multiplexers.

Example of a multiplexer: In the EX stage, forwarded operand1 from register file is directly connected to
ALU, the second input to ALU comes from 3 possible combinations, either the forwarded operand2 from
register file, or the forwarded operand2 from register file that is left shifted by 1 (for ADL instruction),
or the 6 bit immediate sign extended to 16 bits. Similarly several multiplexers decides the steering logic
of the processor.

The 2 to 1 mux and 4 to 1 mux is coded in the file 'mux.v’

3.2 ALU

The ALU performs ADD, NAND or NOP operations based on the control signals from the ALU Con-
troller. The main decoder decides the operation the ALU should perform. In case of ADC, ADZ and
other conditional instructions to determine which operation should be performed based on C and Z
flags, reevaluation is done at EX stage. It also determines whether C and Z should be modified or not.
In case of conditional instructions, if the ALU controller sees that the condition has not been met, then
the ALU does not perform any operation, also the writeEnable of the Register File (RO to R7) and the
data memory write enable would be defined LOW(0) to ensure that the system state is not modified.

3.3 Memory

The memory address points to two bytes in the memory and the size of the memory is 4096 bytes(4
KBytes). Both data and instruction memory are of size 4KB. All the unused part of the instruction
memory are filled with NOP instructions.

3.4 Register File

The register file consists of 8 registers (RO to R7) that gets updated on the positive edge of the clock,
if an active high write enable is asserted. Register R7 always stores the program counter. R7 cannot
be modified by other instructions, but it can be read.

The SA/SM instruction needs access to all the register values. Hence, a seperate 112 bit vector output
that gives out all the values of registers is given to LA/LM/SA/SM controller.

3.5 Intermediate Pipeline Registers

There will be 5 pipelined registers namely IF/ID, ID/RR, RR/EX, EX/MEM, and MEM/WB between
each stage of the pipeline each having an active high write enable. Each corresponding pipeline registers
stores the necessary data required for the upcoming stages.

3.6 CCR

We have 3 additional registers for storing the following:
1. Program Counter
2. Carry Flag
3. Zero Flag

3.7 Forwarding Unit

Data Forwarding is implemented at the beginning of execute stage. A separate control for Forwarding
unit compares the source operand address with the destination register address in the stages ahead. If
a match is present it forwards the most recent data.

3.8 Control Decoder

In the Instruction Decode stage, we have the main control decoder. It provides the control signals for
all the multiplexers to drive the steering logic. These control signals drive the writeEnable lines in the
register File and memory.

3.9 LA/LM/SA/SM Controller

The memory has only one read/write port. Hence. for the instructions LA, LM, SA, SM, a separate
controller is designed which will stall the main pipeline every time one of these instructions comes at
the memory stage. The pipeline will remain stalled until the complete memory operation is executed
for these instructions.

3.10 Branch and Jump Controller

For the instructions JAL, BEQ, JLR, JRI, a separate controller is designed in which the next address
is calculated. The output of this is the PC_Select line which drives the MUX to choose between PC+1
and corresponding address for JAL, BEQ, JLR and JRI.

3.11 Branch Predictor

We have designed a 1 bit predictor which has a depth of 8 entries. Each entry has 33 bits, 16 bit PC,
16 bit branch target address and 1 history bit.

Each time a new Jump or Branch instruction is encountered, the History Table is updated. It also
dynamically updates the History bit based on branch taken/not taken.

If the present program counter matches with the entry in the Branch History Table, then the next
Program counter is fetched from the target address from the LUT using a MUX. The control for the
MUX will be logical AND operation of match and history bits. The match bit becomes 1 when an entry
corresponding to the present PC is found in the LUT.

Visual Paradigm Online Free Edition T — U

T=1 History Bit = 1 History Bit = 0 T=0

T = 1 Visual Paradigm Online Free Edition

Figure 3: Branch Predictor State Diagram

4 Pipeline Stages

4.1 Instruction Fetch

This is the first stage in the pipeline, that fetches the two byte instruction from the memory. Instruction
memory is a simple 16-bit addressable memory with 1 data read port. For fetching, we have the data
for the instruction address in the register R7. The PC gets updated appropriately and fetches the
instruction as the data output value from instruction memory. We have a PC selector MUX which
selects between either PC+1 or the jump/branch target addresses calculated by the ID/EX stages of
jal, jlr; jri and beq. The fetched instruction pass through a NOP MUX| whose control is determined by
the branch controller (whether the current instruction is to be flushed or not, depending on the decision
from branch/jump controller). If we need to stall, we don’t forward the instruction fetched onto the
next stage.

4.2 Instruction Decode

This is the second stage of the pipeline. It decides the operand address and the target destination
address. This stage generates all the control signals based on the input instruction. In case of branch
instruction and incorrect speculation, the pipeline needs to be flushed. This is done by the NOP MUX
in this stage.

4.3 Register Read

The IITB RISC design has 8 registers from R0 to R7 in the register file. For instructions involving
register read, 2 data read ports are provided to obtain the values in corresponding registers. Register
file also has a write port used during the writeback stage.

4.4 Execute

The third stage in the pipeline, it consists of the forwarding controller, the ALU and ALU Controller.
The data of the operands are read from the intermediate pipeline register and fed in the ALU. Both the
operands are 16 bit. All the instructions functionality can be broken into two operations namely AND
and NAND. Hence, the ALU supports these two operations. The "ALU.v’ and ’aluCtrl.v’ file have all
these operations and control logic coded respectively. There are 2 flags present, namely zero flag and
carry flag. he operands are extended by 1 bit before providing the the ALU for execution. Based on the
conditional instructions, memory and register write signals are redefined. Branch and jump instructions
are resolved in this stage as the forwarded values are available here. If the speculated BEQ instruction
is correct then there would not be any penalty, however there would be a 2 cycle penalty in case the
speculation is incorrect.

4.5 Memory Access

The fourth stage in the pipeline, it consists of a 4KB memory, with an active high write enable. It
performs the task of reading or writing from data memory based upon the instruction provided. We
have a 16-bit addressable memory with 1 port which is used for both read and write operations.

This stage also has a separate LA LM SA SM controller. The main functionalities of the controller is to
stall the pipeline whenever an LA or LM or SA or SM instruction reaches the memory stage. Until all
the memory accesses are complete, the pipeline is stalled. The controller also computes the consecutive
memory address that needs to be accessed. This is necessary because the memory in practice cannot
have multiple ports for read or write.

4.6 Write Back
The final stage in the pipeline, this updates the register file if the corresponding write enable is high.

5 Intermediate Pipeline Registers

Following signals are present in the respective pipeline registers:

5.1 IF/ID Register
1. Current PC

. PC+1 (In case prediction fails)

Instruction (Current Instruction being executed)

Speculation (Whether the branch has been speculated)

ID/RR Register

. Current PC

PC+1 (In case prediction fails)
Instruction (Current Instruction being executed)
Speculation (Whether the branch has been speculated)

Control Signals generated

RR/EX Register

. Current PC

. PC+1 (In case prediction fails)

Instruction (Current Instruction being executed)
Speculation (Whether the branch has been speculated)
Control Signals generated

Source Operand Address (for forwarding logic at EX)

Destination address and data from WB stage for forwarding 3-cycle apart dependency. WB
updates register file at the positive edge of CLK, hence the data would only be available at the
next clock edge . To accomodate the forwarding for data at WB, this entry is made.

EX/MEM Register

. Control Signals

Destination Address of register and ALU result
Register Data to be written to memory in case of SW, SA, SM

Memory Access Address.

MEM /WB Register

. Register File write enable

Destination address of the Register File.

Data to be updated at the Register File.

6 Hazards

To minimize stalling and improve the performance, we have taken care of different hazards using data
Forwarding and Dynamic Branch Prediction using a 1 bit History. Using data forwarding, we take
care of all the 3 cases namely: immediate dependencies, 2 cycles apart dependencies and 3 cycles apart
dependencies.

If the branch is incorrectly predicted, the pipeline needs to be stalled. The pipeline is further flushed
by inserting NOP instructions wherever needed. Following hazards are handled by our implementation.

6.1 Load Hazards

Example of a load hazard:

I1: Iw ra, mem_addr

12: add rc, ra, rb

Here data from memory is read in I1 and is stored in ra. And this same register is accessed in the
immediate instruction. When I1 reaches the EX stage, 12 will reach the ID stage. ra will only be
updated at the end of the MEM stage and hence 1 cycle stall is needed between these instructions.

6.2 LA LM Hazards

Example of a LA LM hazard:

I1: la ra, mem_addr

12: add rc, ra, rb

When instruction I1 reaches MEM stage, the pipeline is stalled so that the memory can be accessed
only through one read port in each cycle. LA requires to access memory for 7 cycles. 12 can’t stay in
the EX stage as it needs the updated values after la is executed completely. Hence 12 will be stalled in
the ID stage and only after MEM stage of 11 is complete for all cycles, 12 can proceed.

6.3 Branch Hazards

Branch instructions are speculated with predictions, in case if the prediction is incorrect, then the
instructions in IF and ID are replaced with NOP. Prediction is only applicable for JAL and BEQ
instructions. For JLR and JRI, the branch is based on the target address in the register. Hence these
instructions need a 2 cycle penalty since forwarding is implemented at the EX stage.

7 Simulations and Results

7.1 Running the Simualtions

Open a terminal in the Codes folder, use the following commands to start the processor:

1 iverilog -o iitb_risc topModule.v alu.v aluCtrl.v branchHist.v branchJumpCtrl.v
ctrlUnit.v dataMem.v frwdingCntrl.v instrMem.v loadStoreMultiple.v mux.v
registerBank.v Stagel2_IF2ID.v Stage23_ID2RR.v Stage34_RR2EX.v Stage45_EX2MM.v
Stageb6_MM2WB.v topModuleTB.v

2 vvp iitb_risc

3 tkwave dump.vcd

10

In this report we have presented the execution of the following two example codes as shown in Figure
[and Figure [] respectively.

rom[@] 16'b0111606600000000 ;
rom[1] 16'bo0EOBROOBROEO111] ;

rom[2] 16 'b0101000001000000 ;
rom[3] = 16'b&181600661660001 ;
rom[4] = 16'b0101000001000p10;

rom[5] 16'b1106016010100000 ;
rom[6] 16'b110101001600010180;

Figure 4: Instruction Memory - Example Code 1

rom[@] = 16'b0111000000000000 ;
rom[1] 16 ' bobooEOOEEOOEO111] ;

rom[2] 16'b8181006001000000 ;
rom[3] 16'b0101000001000001 ;

rom[4] 16'b01610060016000160 ;
rom[5] 16'b1116016660000000 ;
rom[6] 16'b1111606000000000 ;

Figure 5: Instruction Memory - Example Code 2

The respective simulation results with all the important signals generated from GTKWave software
are shown in the following Figures [6a] and [6D]

11

'S Joy aulla

Bunjes

w140y uljadid Suljjels

WS o) auljadid ul

MS £ P4 p3

A Joy suljadid Bul

€15

£=04 jo
anjep Sunois :

[0:L2Tlod 03 LY eaegpeaz
[o:TT]appe wex

U3 21TIM WA

[D:gT]eaep =23TIM w=am
[0i5Tle3Ep PR3z wam

[0:glappe wox

13831
[0:gT]2d
[0:5TlucTaoRIASUT
T
E]
SWTL
s|eubig

STqeUga2TIA
[o:LzT]0¥ 93 L¥ eaegpeaz
[0:TT]Zppe wex
w2 2aTIM Wew
[0:5T]=aep 23TIM wam
[0:5T]eaep peax w=w
[o:£]appe wox
12821
[o:5T]12d
[0:5T]uoTaonIasUT
T
AT

WL

Seubi

(b) Simulation Results - Code 2

12

(a) Simulation Results - Code 1

Hence we can see from the simulation results that the processor is indeed giving the outputs as de-
sired. Moreover, data forwarding, stalling of pipeline and other hazards are also verified. The processor
was tested extensively with many corner cases.

8 Conclusion

We have implemented a 6 stage pipelined processor based on the RISC architecture. The IITTB-RISC ISA
was provided for this processor design. It supports 19 instructions and is optimized for performance
using data forwarding and 1 bit branch prediction techniques. Other hazards are taken care of by
stalling/inserting NOP instruction wherever required. We used Quartus for synthesizing the complete
design and simulated all the instructions using GTKWave.

13

	Problem Statement
	Design Description
	Datapath Implementation
	Multiplexers
	ALU
	Memory
	Register File
	Intermediate Pipeline Registers
	CCR
	Forwarding Unit
	Control Decoder
	LA/LM/SA/SM Controller
	Branch and Jump Controller
	Branch Predictor

	Pipeline Stages
	Instruction Fetch
	Instruction Decode
	Register Read
	Execute
	Memory Access
	Write Back

	Intermediate Pipeline Registers
	IF/ID Register
	ID/RR Register
	RR/EX Register
	EX/MEM Register
	MEM/WB Register

	Hazards
	Load Hazards
	LA LM Hazards
	Branch Hazards

	Simulations and Results
	Running the Simualtions

	Conclusion

