
EE 705
VLSI Design Lab
Course Project

Traffic Light Controller System

Anuranan Das 18D070037
Parth Makode 18D070056
Pranav Patel 18D070057

1

Contents
1 Introduction and Objectives 3

2 Theory – Algorithm 3

3 Implementation - Components used 5

4 Software used 6

5 Application Process 6

6 Results 6
6.1 Quartus and iVerilog Simulation . 6
6.2 Labsland Implementation . 7

7 Summary 10

8 Code Base 10

9 References 10

2

1 Introduction and Objectives
Traffic signals generally operate with a fixed time for red and green lights. To manage traffic better, the
fixed time value can be controlled and changed according to traffic conditions. The aim of the project
is to implement a Traffic Light Controller (TLC) which will operate according to the traffic load. It
is simulated in quartus and also tested on FPGA at Labsland. The objectives for the project can be
broadly as follows :

• Implement a design of a modern FPGA-based Traffic Light Control (TLC) System to manage the
road traffic.

• Intelligent peak timing method based on sensors, more efficient than usual fixed time method.

• Hierarchical (Module based) design of the system in verilog and conversion for running in FPGA.

2 Theory – Algorithm
Traffic light controller (TLC) is used to lessen or eliminate conflicts at area shared among multiple traffic
streams called intersections; by controlling the access to the intersections and apportioning effective
period of time between various users. Goal of this project is to manage the traffic movement of four
intersecting roads and to achieve optimum use of the traffic.

Road structure of the traffic intersection is shown is fig. 1. In this structure, there are six traffics,
represented by T1, T2, T3, T4, T5 and T6 to be controlled. T1 and T2 have been identified as the main
road for the first junction while T4 and T6 are for the second junction. The last two traffic lights, T3
and T5 are the smaller roads. The traffic flows are symbolized by the arrows in the fig. 1.

The image of the square which was used for this implementation is shown below.

Figure 1: Road system considered in this project

The timing settings for the TLC are as follows:-

• Peak Hours

– T1 and T6 remain green for 32s
– T2 and T4 remain green for 32s

3

https://iitb.labsland.com/standalone/login

– T3 and T5 remain green for 16s

• Non - Peak hours

– T1 and T6 remain green for 16s

– T2 and T4 remain green for 16s

– T3 and T5 depend on sensor values. Refer to fig. 2 .

Some other important conventions followed are noted below,

• Signals are in active low format, 00 = Green , 01 = Yellow and 10 = Red.

• Reset is active low and resets the system to start for TL1 - TL6 cycle.

• The vertical roads are main roads which are always busy.

The Flowchart below explains the state flow of the TLC system.

Figure 2: State flow for the TLC system. To note here, T5 and T3 cycle depends on the sensor values
during off-peak hour.

Horizontal roads, i.e. T3 and T5 crossings have sensors, which observe the load and turn on/off
appropriately for control. Some peak hour values are preset, and the sensors can always turn on in case
of unexpected load. The time is kept in check with a 12 hour clock with a flag to denote am or pm.

4

3 Implementation - Components used
The code is implemented in the form of four modules:

• Clock module – A twelve hour BCD clock with am and pm indicator.

• TLC main module – The state macheine of fig. 2 is implemented here.

• Peak - Off-peak module – Determines the timings of the day to be considered as peak traffic time
or not.

• Top module to integrate all the submodules.

The input signals to the overall design is as follows :

• clk – System clock, set according to time granularity required.

• sensor1 and sensor2 – Sensor values need to be fed externally through hardware interfacing.

• ena – Enable for clock.

• reset – Restart the entire system while set.

The output signals are :

• TL1 to TL6 – Traffic light outputs, each two bit values with encoding as mentioned earlier.

A detailed interconnection of modules is illustrated in fig. 3 .

Figure 3: Module Hierarchy Planning

It is important to note here that, an equal importance was attached in formulating the testbench to
verify the working of design correctly. Manually picked test-cases were used however, designed by the
team members.

5

4 Software used
The following software and tools were used in carrying out the project successfully.

• Simulation – Quartus, Modelsim and iverilog.

• FPGA implementation – Labsland, DE2-115.

• File versioning – Github.

5 Application Process
The project ideation and application was managed in the following manner.

1. Initially Learnt the concept of dynamic time approach from ref. [1].

2. Decided we are going to simulate in verilog.

3. Wrote the independent submodules.

4. Parallely we wrote testcases.

5. Then Topmodule was created joining all submodules and linked to testbench.

6. Once simulations were perfected, we moved on to modify code for labsland.

7. Same testcases were verified with labsland.

8. Documented results and demonstrated in video.

6 Results

6.1 Quartus and iVerilog Simulation

Quartus was used to get the RTL netlist, as shown in fig. 4. The simulation was run in iverilog (can be
also done on Modelsim). For this, a simple testbench wass written. The clock and sensor values were
initialized as per the requirement to verify the working of the system based on testcases designed.

Figure 4: RTL View of the Controller, extracted from Quartus

6

https://iitb.labsland.com/standalone/login
https://github.com/

The peak hours were considered to be 0700 - 0900 , 1200 - 1400 and 1700 - 1900. These values can be
changed anytime, as per the requirement of the traffic intersection. The simulation results from iverilog
are shown below.

To see the video and screenshots for this part, click on the link below.
Demo and screenshots link : Link
One of the cases is detailed in the figure below. The time is 3 pm, and both sensors are off.

Figure 5: TLC output for non-peak hour

Figure 6: TLC output for non-peak hour

6.2 Labsland Implementation

The TLC code was modified to work in Labsland and verified for the same testcases. The system was
designed using the following mapping in labsland (as depicted in fig. ??). The clock input was slowed
down to give the system changes enough time to be visible to bare eyes.

7

https://drive.google.com/drive/folders/1alVDiMEtSXd0-yUG3NTLtTI9JO7AZ8u9?usp=sharing

Signal name Signal type DE2-115 mapping Brief Role
clk Input CLOCK_50(slowed version) System clock

Reset Input SW[0] For Reset
Ena Input SW[1] For Count

Sensor1 Input SW[2] Sensor Indication
Sensor2 Input SW[3] Sensor Indication
Peak Input SW[4] Peak hour indication
Peak1 Input SW[5] Peak hour indication

LEDR-TL6 Output LED[17:15] TL6
LEDR-TL5 Output LED[14:12] TL5
LEDR-TL4 Output LED[11:9] TL4
LEDR-TL3 Output LED[8:6] TL3
LEDR-TL2 Output LED[5:3] TL2
LEDR-TL1 Output LED[2:0] TL1

an Output LEDG[0] am/pm
SW[4] Output LEDG[1] Peak hour indication
SW[5] Output LEDG[2] Peak hour indication

HEX0-HEX7 Output HEX[0]-HEX[7] For Display

Table 1: Signal mapping table for LabsLand

Figure 7: System during peak hours

8

Figure 8: System during off-peak hours and when both sensors are deactivated

Figure 9: System during off-peak hours and sensor 1 is activated and sensor 2 is off

9

Figure 10: System during off-peak hours and sensor 2 is activated and sensor 1 is off

Video Link : Video

We have taken into notice the glitches in latency in Labsland.

7 Summary
As discussed in the above section, we were able to successfully implement the design in verilog both in
terms of simulation and in terms of labsland FPGA respectively. One of the advantage of this design over
the existing method is the waiting time of driver during off-peak hour has been reduced, means that the
normal design cycle (using fixed-time technique) has been reduced notably, thus ameliorate reliability
and flexibility of the TLC.

The work could be extended with minor modifications for pedestrian control as well. Finally, it can
be written into an embedded chip to carry out the traffic control in a city.

8 Code Base
Link to github repository: https://github.com/AnDa-creator/TLC_ee705Verilog

9 References
[1] M.F.M. Sabri, M.H. Husin, W.A.W.Z. Abidin, K.M. Tay, and H.M. Basri. Design of fpga-based

traffic light controller system. In 2011 IEEE International Conference on Computer Science and
Automation Engineering, volume 4, pages 114–118, 2011.

10

https://drive.google.com/file/d/1F1coaOr64DXDu8DWGoUK56tZn9T2P7AM/view?usp=sharing
https://github.com/AnDa-creator/TLC_ee705Verilog

	Introduction and Objectives
	Theory – Algorithm
	Implementation - Components used
	Software used
	Application Process
	Results
	Quartus and iVerilog Simulation
	Labsland Implementation

	Summary
	Code Base
	References

