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Quantum technologies have emerged as a prospective alternative to conventional electronics in the
post-Moore era. Many platforms are being explored to be set up as hosts for computational quantum
bits or qubits. Graphene is one of the most suited candidates for hosting such qubits. Recently, qubits
in graphene have been realized regarding two degrees of freedom associated with the system: spin and
valleys. Although several experimental works have seen the light of day, compact theoretical modeling
of transport-mediated characteristics in these systems is yet to be introduced. In this project, our
focus is to explore the possibilities of employing already established quantum transport theory to
develop a simulable model to explain and predict the behavior of a similar class of systems.

1 Prior Works

Entanglement Generation in spin coupled Quantum dots: I worked on a solid-state thermal
machine to generate entanglement between two distant spins. The idea was to control the steady state
currents of the system by applying and manipulating specific dc voltages. We analyzed the system’s
Liouvillian to find the final stable states. The composite Hamiltonian of the system is defined by

H = HD +HC +HA +HDC +HDA

where HD, HC and HA represent the Hamiltonians of the dot, contacts and ancillae respectively. The
term HDC is the tunneling Hamiltonian between the dot and contacts, and HDA signifies the exchange
coupling between the ancillae and the dot. The dot consists of two spin-degenerate energy levels at ϵ
and with Coulomb interaction U.

The schematic of the device is included in fig. 1. Our analysis for the transport setup followed
the approach by Braig et al.[1]. We assume that the strength of contact-to-dot electron coupling is
smaller than the contact-induced thermal broadening of the energy levels in the dot. The dynamics
of an open quantum system are given by the master equation of Lindblad form, written canonically
as

ρ̇ = −i[H, ρ] +
∑
k

γkD [Ok] ρ

We can infer an open system evolution’s transient and steady-state dynamics from the eigenspec-
tra of the Liouville superoperator. Such a Liouville superoperator vectorizes the dynamics to Liou-
ville–Schmidt space, given by the form

|ρ̇⟩ = L|ρ⟩

Entanglement generation is an important problem for quantum technologies. In the context of quan-
tum dot systems, such entanglement generation can be between quantum dots or in impurity atoms
interacting with the quantum dots. The work details can be found at [2].
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Figure 1: Figure 1. Schematic of the voltage-controlled steady state entanglement switch device: (a)
the device consists of a quantum dot (shown in yellow) weakly coupled to spin-polarized contacts
(red and blue boxes) and placed in a bath of two spin 1/2 impurities (green spheres) with which
it interacts strongly. Steady-state entanglement is generated between the two constituent impurity
spins, which can be controlled by the voltage applied across the contacts. (b) The dot is coupled to
oppositely spin-polarized left and right contacts with electronic transport rates γL and γR respectively.
Interaction coupling between the impurity spins and the quantum dot is represented by J . The left
contact is held at constant potential µL and a voltage bias Vapp = (µR − µL) /q is applied across the
two contacts which are at temperatures TL and TR respectively. Dot onsite energy is represented by
ϵ, and the charging energy is U . Interaction between the dot and bath is stronger than the electronic
transport rates. Therefore, the complete dot-impurity system can evolve and pass through entangled
states before the electron exits.

2 Spin Qubits

The spin-based platform has been considered an attractive candidate for solid-state qubits as they
allow controlled coupling of one or more electrons, using rapidly switchable voltages applied to elec-
trostatic gates. A variety of spin qubits has been reported and realized in semiconductor systems. A
brief description of the significant types is given [3].

2.1 Loss-DiVincenzo (LD) spin qubit

Here the spin 1/2 configuration is naturally considered to work as a qubit. The encoding for a
single electron spin ‘Loss-DiVincenzo’ qubit is a direct mapping Si = σi/2. The Loss-DiVincenzo
qubit requires a method of initialization and measurement of single electron spin states. In actual
practice, spin-selective tunnelling to a Fermionic bath of electrons using a large magnetic field B
enables tunnelling of the higher energy QD spin-state to the Fermi sea. The presence or absence of a
tunnelling event, as measured using sensitive charge detectors, is then used to infer the orientation of
the electron spin.

2.2 Donor spin qubits

Bruce Kane published a proposal to use the nuclear spins of 31P donor atoms in silicon to construct
a quantum computer. The donor electron has a hydrogenic s-like ground state with an effective Bohr
radius of 1.8 nm. Measurement philosophy uses gate tuning of electronic wavefunctions. Since Kane’s
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proposal, many elements of this qubit type have been demonstrated, and in so doing, many critical
variations on the donor-qubit concept have emerged.

2.3 Singlet-triplet (ST0 and ST±)qubits

The most straightforward extension of a single qubit is the one from a double quantum dot and
originates from exchange interaction between singlet-triplet (ST0) qubit. Along with the basis states,
the encoded qubit Pauli operators σx, σy, and σz are defined such that the ±1 eigenstates of σz are
the encoded states and the 0-eigenstates are leakage state.
Pauli spin blockade, a manifestation of exchange coupling, enables straightforward, rapid, and high-
fidelity measurement of joint spin states. A spin blockade measurement converts singlets and triplets
to different spatial configurations of the two electrons in the DQD, which a nearby charge sensor can
easily distinguish.

2.4 Exchange-only (EO) and resonant-exchange (RX) qubits

The LD qubits described in the first section require the following exchange interactions:

• An entangling spin-spin coupling, typically the exchange interaction, can be further used to
realize two-qubit gates.

• An effective magnetic field to manipulate the up and down state cases by implementing single
qubit gates.

However, it is possible to allow for universal quantum computation with the exchange interaction
alone if employing qubits defined by an encoded subspace with constant total spin. These gates are
operated by sequentially pulsing on and off the exchange coupling between a pair of disjoint spins.
The RX qubit differs from the dc-mode EO qubit in that the nearest-neighbor exchange couplings are
constantly set to the same non-zero value instead of zero. Noise mitigation and other motives have
led to further growth of these qubits in the form of asymmetric resonant-exchange(ARX) qubits and
always-on exchange-only (AEON) qubits concepts.

2.5 Spin qubits with additional charge degrees of freedom

One can create qubit variants by putting multiple spins into common sites or correlating sites to spin,
to more strongly exploit spin-charge hybridization for qubit initialization and readout, electric-field
control, and electric-dipole coupling to other qubits or cavity electric fields.

3 Singlet-triplet spin qubit manipulation

Manipulation of singlet-triplet(ST) qubits can be achieved, and several findings have been reported on
the same.[4] The relative energy detuning ϵ of the (0,2) and (1,1) charge states can be rapidly controlled
by applying calibrated voltage pulses to gates L and R. The control cycle of the experiments mainly
involves the following stages (refer fig. 2):

• Preparation: Quantum point contact (QPC) sensors fabricated next to each dot serve as a
local electrometer and hence shows the signature of electron addition into the system. The
transfers to a certain dot state are mediated by tunnel barriers controlled by voltages VL and
VR(L, left; R, right) and they connect the dots to adjacent reservoirs, allowing electron transfer
to the dots.
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• Singlet separation: The detuning between the dots can be used to get the transition from
(0,2) to (1,1) and vice versa. Tight confinement in (0,2) favors a spin-singlet configuration,
denoted (0,2)S, for above a certain energy threshold. For values below the threshold (1,1), energy
states are preferable. In this case, four spin states are accessible: the singlet(S00), denoted S
[suppressing the (1,1) label]; and three triplets (S01), denoted T–, T0, andT+, corresponding to
ms = –1, 0, +1. In absence of magnetic field effects, these states are degenerate.

• Evolution: Spin manipulation after preparation and separation can be done by a number of
techniques, namely,

– Spin SWAP and Rabi Oscillation-based manipulation.

– Singlet-triplet spin-echo-based occurrences.

• Measurement: In all measurements, a cyclical pulse sequence can be used. The method
involves projecting the state onto (0,2) state by QPC and selective tunnelling of (0,2) states.

Figure 2: Spin Manipulation for S-T qubits.

4 Transport Formalism in Weakly Coupled Double QDs

4.1 The Hamiltonian

One can consider a double quantum dot, as shown in Fig. 3, that comprises two dots with spin
degenerate orbitals. The DQD Hamiltonian[5] can be defined in a localized orbital basis as

ĤDQD =
∑
iσ

εiniσ − t
∑
σ

(
c†1σc2σ + h.c.

)
+ U

∑
i

ni↑ni↓ + Unn

∑
σσ′

n1σn2σ′ (1)

with on-site energy εi and inter-dot hopping t. c†iσ, ciσ are Fermi operators for the molecular levels,
and niσ = c†iσciσ is the number operator. The strength of the intra-dot and inter-dot Coulomb repul-
sion is given by U and Unn respectively.
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Figure 3: Toy Model for a Double Quantum Dot coupled to leads. [6]

4.2 Fermi’s Golden Rule

The coherence factors can be calculated between two different states of the diagonalized hamiltonian
using fermi’s golden rule given by the following equation

γα
ij = γα

∣∣〈N, i
∣∣c†m∣∣N − 1, j

〉∣∣2 , (2)

where c†m is the creation and/or annihilation operators for an electronic state on the end dot coupled
with the corresponding electrode, and γα is the bare left or right electrode coupling factor.

4.3 Master Equations

Rate matrix-based master equations govern the transport in this system approach because the broad-
ening is negligible. The total transition rates W

(1)
χ,χ′ (in the absence of relaxation) are the sum of

the transition rates associated with electron tunnelling through either the left or the right barrier,
W

(1)
χ,χ′ = W

(1)R
χ,χ′ +W

(1)L
χ,χ′ where χ and χ′ are the many-body states. [7, 5]

Together with Γiσ
r = 2π |triσ|

2 ρe we find

W
(1)r
χ′,χ = 2πρe

∑
σ

f+
r (Eχ′,χ)

∣∣∣∣∣∑
i

triσ

〈
χ′

∣∣∣c†iσ∣∣∣χ〉
∣∣∣∣∣
2

+ f−
r (−Eχ′,χ)

∣∣∣∣∣∑
i

triσ ⟨χ′ |ciσ|χ⟩

∣∣∣∣∣
2
 (3)

for χ′ ̸= χ, together with W
(1)r
χ,χ = −

∑
χ′ ̸=χW

(1)r
χ′,χ (sum rule). Eχ′,χ = Eχ′ −Eχ is the energy difference

between the many-body states χ and χ′. Here, f(x) = 1/ (exp (x/kBT ) + 1) is the Fermi function,
f+(x) = f(x) and f−(x) = 1− f(x), and f±

r (x) = f± (x− µr).
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4.4 Inelastic Processes - Photon Relaxation

Photon relaxation processes, as illustrated in fig. 4 can be included in the sense that electrons on the
dot can change the level by emitting or absorbing a photon for i ̸= j with the Hamiltonian

Hph = HB +HB−D =
∑
q

ωqd
†
qdq +

∑
qσij

gph
(
d†q + dq

)
c†iσcjσ (4)

where we consider the coupling amplitudes to be independent of i, j and q.

Assuming weak coupling to the bosonic bath (in addition to weak tunneling), we only keep con-
tributions to either first order in αph. The total transition rates are, thus, given by

W
(1)
χ,γ′ = W

(1)l
χ,χ′ +W

(1)r
χ,χ′ +W

(1)ph
χ,χ′ . (5)

The bosonic rates are

W
(1)ph
χ′,χ =

∑
σ

b (Eχ′,χ)

∣∣∣∣∣∑
i ̸=j

〈
χ′

∣∣∣c†iσcjσ∣∣∣χ〉
∣∣∣∣∣
2

(6)

for χ′ ̸= χ, and W
(1)ph
χ,χ = −

∑
χ′ ̸=χ W

(1)ph
χ′,χ , where b(x) = sign(x)αph(x)nb(x), with the Bose function

nb(x) = 1/ (exp (x/kBT )− 1). This allows us to build the matrix blockW(1) and find out probabilities
to get the current through the dots using the below stationary master equation and current expression.

W(1)p
st
= 0 (7)

I =
e

2h̄
eTW(1)rpst (8)

Figure 4: (a) Schematic of boson-based relaxation in a single QD. (b) The origin of triangles in the
high bias regime, the grey triangle, corresponds to inelastic tunneling, while dark lines correspond to
resonant tunneling effects. [3, 8]

5 Logic For Transport Codes

Codes were constructed in MATLAB. The program flow consisted of the following :

• Define constants and arrays for varying parameters of Interest

• Formulate diagonal and off-diagonal terminals using binary logic for each possible electron oc-
cupancy level.
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• Compartmentalize the TBH into occupation number-based subspaces.

• Diagonalize each subspace and find out the many body eigenstates.

• Calculate gammas for sequential tunneling as well as relaxation processes.

• Formulated the Rate matrix in this same eigenstate basis and find the stationary probabilities
and current.

• To look at occupancy in each dot, we need to revert back to the original basis in which the
hamiltonian was written and then calculate expectation.

6 Results and Discussion

This section discusses the results and corresponding inferences from the work done up until now.

6.1 Coloumb blockade and NDR in DQDs

As an initial exercise, at the onset of the project, we reproduced the current-voltage characteristics in
a double quantum dot from ref [5]. There were three cases described in detail in the relevant paper,

• Regular Coulomb-blockade plateaus in the absence of orbital offset since the Negative Differential
Resistance (NDR) condition is not satisfied.

• Forward bias NDR, which occurs under certain conditions as derived.

• Reverse bias NDR can also occur in the presence of finite orbital offset with off-resonance.

The plots in fig. 5 are hereby depicted with a description of the conditions required to get them.

Figure 5: Reproduced diagrams from [5]. (a) A simulated case when there is no NDR with ∆ϵ =
0, U11 = U22, (b) Simulated forward bias NDR with ∆ϵ > 0 with resonance ϵ1 + U12 = ϵ2 + U22, (c)
Simulated case for both forward and reverse NDR:: ϵ1 + U12 < ϵ2 + U22, (d) Columb diamond on
varying overall gate voltage with constant detuning versus the bias voltage, (e) Experimental forward
bias NDR, (f) Experimental forward and reverse NDR.
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Figure 6: Charge Stability Diagrams for low bias of VSD = 0.1mV . (a) No cross-capacitance coupling
leads to a perfect honeycomb structure. Gate voltages are varied to tune each dot. The numbers
mark the electron occupation number in each compartment. (b) Simulated with the cross-capacitance
coupling of αij = 0.5, signifying the effect of one dot on the other.

6.2 Charge Stability Diagram for two-level DQD

Charge stability diagrams are the signature of number-wise electron addition and removal in these
systems and have been extensively realized in experiments. Classical models based on electrostatic
capacitance have been extensively used to simulate the variation of the current characteristic with
variable gate voltages. However, as discussed earlier, the Quantum mechanical approach is more
robust and accurate in predicting the behavior of electrons in this system. Simulated current-voltage
characteristics as shown in fig. 6 matches with experimentally obtained graphs.

Figure 7: Charge Stability Diagrams of 4 level system for low bias of VSD = 200µV . (a)Current as a
function of gate voltages at a constant VSD. The numbers mark the electron occupation number in
each compartment. (b) Mapped Occupation levels for the 4 levels (c) Experimental Charge stability
diagram from a Bilayer Graphene system.[9]
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Figure 8: Effect of SO-coupling for low bias of VSD = 1.5mV . (a)The charge stability diagram shows
zero conductance at certain bias voltages, the signature of PSB. (b) PSB is lifted in these systems
owing to the magnetic field application, and spin-orbit coupling with other parameters is kept constant.

6.3 Four-level Charge Stability Diagrams

The above system can be expanded to cases where we have 2 levels per dot; hence at maximum, 8
electrons can reside in the system. Figure 7 shows the relevant simulation outcomes and their match
with experiments.

6.4 Addition of Spin-Orbit Coupling:

We revert back to the two-level system and describe the effects of spin-orbit coupling in them. If
a certain magnetic field is added, then a non-zero SO coupling can result in spin-flip and conduc-
tion, leading to the lifting of Pauli Spin Blockade(PSB)[10]. This phenomenon has been observed in
experiments and is also shown to be true from the simulations (see fig. 8).

6.5 Inelastic Scattering

All the simulations in the last parts took into account only resonant sequential tunneling processes.
However, in natural systems, inelastic processes and cotunneling play a crucial role in forming bias
triangles at the high bias regime [3, 11, 9]. We added a photon relaxation model and successfully
replicated the formation of bias triangles for the system under consideration. I also replicated photon
relaxation coupling effects on the current graph from [7] to verify the validity of the model implemen-
tations. Figures 9 illustrate the impact of Photon relaxation, formation of bias triangles, and effects
of spin-orbit coupling.

7 Future work

This work shall be continued in my DDP phase 2. The idea is to create a similar transport setup for
valley qubits[12, 13, 14]. We then plan to use this model to create a CNN model in conjunction with
the transport to identify the spin and valley blockade phenomenon automatically.
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Figure 9: Effect of inelastic scattering processes. (a) Photonic relaxation processes lead to the lifting
of the spin blockade in single quantum Dots. (b) Experimentally found bias triangles in a high bias
regime.[9] (c) & (d) Simulated bias triangles without SO coupling at a high bias of |VSD| = 1.5mV .
Changing source drain voltage polarity changes the direction of bias triangles. (e) & (f) Adding spin-
orbit coupling makes extra excited states available, giving rise to extra conduction lines as expected.
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